
USING SERIOUS
GAME TO ENHANCE
ALGORITHMIC LEARNING
AND TEACHING

Wassila Debabi
Tahar Bensebaa

Computer Science Department, Laboratory of Research in
Computer Science (LRI), Badji Mokhtar-Annaba University, Annaba,
Algeria - wassiladebabi@gmail.com; tahar.bensebaa@univ-annaba.
org

Keywords: Algorithmic learning, Serious game, Learning games, Education.

PEER REVIEWED PAPERS

Data structures and algorithms are important foundation topics in
computer science education. However, they are considered to be hard
to teach and learn because usually model complicated concepts, refer to
abstract mathematical notions, or describe complex dynamic changes in
data structures. Many students in programming courses have difficulties to
master all required competencies and skills especially at introductory level. In
the literature there are different ways to enhance learning programming and
deal with the important dropout rate. Recently, games are increasingly being
used for education in various fields. We hypothesize that games have the
potential to be an important teaching tool for their interactive, engaging and
immersive activities. So they can improve student engagement, motivation,
and consequently learning. To this end, we are developing a game to teach
basic algorithmic concepts and algorithms. We aim to initially investigate
the educational games developed for and used in the computer programming

for citations:

Journal of e-Learning and Knowledge Society
Je-LKS

The Italian e-Learning Association Journal

Vol. 12, n.2, 2016
ISSN: 1826-6223 | eISSN: 1971-8829

Debabi W., Bensebaa T. (2016), Using Serious Game to enhance algorithmic learning and tea-
ching, Journal of e-Learning and Knowledge Society, v.12, n.2, 127-140. ISSN: 1826-6223,

e-ISSN:1971-8829

128

PEER REVIEWED PAPERS
Vol. 12, n. 2, May 2016Je-LKS

domain and review to which level they address the aforementioned difficulties. Then, we propose a
role playing game called AlgoGame based on existing solutions and incorporates new elements. A pre
validation of the game with novice students was very encouraging and demonstrates that learning
programming can be enhanced by playing with AlgoGame.

1 Introduction
Learning programming and its basics are fundamental skills that all compu-

ter science students are required to learn during their curricula. For beginners,
this learning can be in many cases difficult and challenging, especially if it
is their first contact with this area. The specificities of those difficulties and
the corresponding causes continue to be an ongoing topic of research, many
reasons are pointed out for this, and several researches has been carried out to
recognize the characteristics of novices programmers. Mostly, the traditional
learning methodologies usually based on doing countless exercises that aim to
cover many areas, but are often disconnected from each other and can become
tiresome, as they offer little immediate rewards to the student (Coelho et al.,
2011) Also, the programming languages typically used in programming clas-
ses are professional in nature (C, C++, C# and Java) they have extensive and
complex syntaxes, rendering learning difficult for beginners (Jenkins, 2002;
Motil & Epstein, 2000).

Nowadays, technology has become crucial in educational development and
for the revolution in learning systems (Olapiriyakul et al., 2006). Technology
creates and transforms the learning and teaching processes, which brings new
opportunities to the educational system (Esteves et al., 2011).

Serious games technology offers tools that may have potential to help com-
puter programming students to become more engaged on their learning through
a `learn while having fun’ approach (Coelho et al., op.cit.). We propose in this
paper a new game were learning how to program can be enhanced and encou-
raged through this type of approach, by creating a serious game that is both a
conduit of knowledge and experience and at the same time a fun task.

The organization of the paper is as follows. Initially, we expose our theore-
tical framework in Section 2, and then, we present a brief study and discussion
about the existing educational games and introduce our proposed game in
Section 3. Section 4 includes our methodological framework, and a study case
is presented in Section 5. Our experimental results and their implications are
related in Section 6. Finally, conclusions drawn from the work done so far are
provided in Section 7.

2 Theoretical framework
Programming is known for its complexity and difficulty. It is believed to

Wassila Debabi, Tahar Bensebaa - Using Serious Game to enhance algorithmic learning and teaching

129

be hard to teach and to learn and many students in programming courses have
difficulties to master all required competencies and skills. This learning re-
presents a challenging task especially at introductory level and often has the
highest dropout rates (Robins et al., 2003). Many reasons are pointed out for
this, mainly, the traditional teaching methods are generally based on lectures
and specific programming language syntaxes, rendering learning difficult for
beginners, and fail often to attract and motivate them so they get implicated in
programming activities.(Lahtinen et al., 2005; Schulte & Bennedsen, 2006).
Another concern is the students’ difficulties with abstract concepts: knowing
how to design a solution to a problem, subdivide it into simpler code able sub-
components, and conceive hypothetical error situations for testing and finding
out mistakes (Esteves et al., 2008); and difficulties in understanding even the
most basic concepts (Lahtinen et al., op. cit.; Miliszewska & Tan, 2007) such
as variables, data types or memory addresses as these abstract concepts do
not have direct analogies in real life (Lahtinen et al., op. cit.; Miliszewska &
Tan, op. cit.); Actually, the students apply the human principles of thinking
and acting to the computer. We may therefore say that the first step of lear-
ning programming is going from human thinking to programming concepts.
This includes understanding the way programs are executed, both in terms of
internal variables and external files and I/O (Kaasboll, 1998). Many techno-
logical solutions attempt to solve these problems by providing environments
who give facilities in tasks of execution and visualization mechanisms, while
they failed in other aspects such as the lack of motivation and the inability to
properly portray in a comprehensible way the complex computer programming
concepts (Henriksen & Kölling, 2004). To solve these issues, a new wave of
educational environments emerge, called “MicroWorlds” , like StarLogo The
Next Generation (Klopfer & Yoon, 2004); Scratch (Maloney et al., 2004);
Alice (Kelleher et al., 2002) that include algorithm and data structure visuali-
zations and animations in order to improve their learning (Shaffer et al., 2010).
The dynamic and symbolic images in an algorithm animation help to provide
a concrete appearance to the abstract notions of algorithmic methodologies,
thus making them more explicit and clear (Kehoe et al., 2001). Although these
environments provide better visualization of concepts feedback but students,
especially novices continue to face significant problems in computer program-
ming courses (Lahtinen et al., op. cit.; Ragonis & Ben-Ari, 2005). The lack of
motivation and facilitating methods that guide students through understanding
complex concepts are only two of the most evident problems that have yet to
be successfully overcome and thus prevent successful computer programming
education (Pears et al., 2007).

Subsequently, heads are being turn toward other technologies that can make
students more interested and facilitate the task for the teachers. To this end,

130

PEER REVIEWED PAPERS
Vol. 12, n. 2, May 2016Je-LKS

educational games have started gaining teachers’ attention and used as a moti-
vator for students in computer curricula and research (Eagle & Barnes, 2009).
Serious games and games for learning have recently been suggested as an
engaging way of helping students to learn (JISC, 2007). Interest in serious
games emerged initially from speculation that games could provide highly
engaging activities which could be utilized in learning (Boyle et al., 2011).
More importantly games offer methods of learning that are highly consistent
with modern theories of effective learning which propose that learning activities
should be active, situated, problem-based, interactive and socially mediated
(Boyle et al., op. cit.).

As previously said, acquiring and developing knowledge about program-
ming is a highly complex process, and it involves a variety of cognitive activi-
ties, and mental representations related to program design, program understan-
ding, modifying, debugging (and documenting). (Rogalski & Samurçay, 1990,
p. 170). Our principal attention carries on both program design and program
understanding process. Where our goal was articulated according three aspects.
The first one is to let students focus on the resolution of the problem more than
the syntax of programming language. The second is to reduce their difficulties
with abstract concepts. And the last, is to allow them knowing how to design
a solution to a problem by dividing it into simpler problems.

 Thus, we hypothesize that teaching algorithmic concepts through playing a
game can improve student engagement, motivation, and consequently learning
because these factors, according to researchers (Garris, et al., 2002), may be the
most important factors in learning. To this end we propose a new game called
AlgoGame to enhance algorithmic learning and teaching.

3 Related works and proposed game
In this section, we present the most known works in the field of educational

games and particularly games dedicated to learning programming. For each
game, we briefly describe the targeted concepts, scenario and features.

GAME2LEARN (Barnes et al., 2008) this project groups two games with
two distinct scenarios. “Saving Sera” is a 2D exploratory game, implemented
using RPGMaker. The user must perform various tasks involving programming
concepts: correctly reordering a while loop statement of a confused old fisher-
man’s mind; correcting a nested for loop placing eggs in crates; and visually
piecing together a quicksort algorithm. When the player makes a mistake, the
character must fight a script bug, which asks the users various computer science
questions in order to fight the bug.

The second game is “The Catacombs” a 3D game developed using the Bio-

Wassila Debabi, Tahar Bensebaa - Using Serious Game to enhance algorithmic learning and teaching

131

Ware Aurora toolset. In this game, the user is an apprentice wizard who must
perform three progressively more complicated tasks. The first involves two if
statements; the second, a nested for loops; and the third, solving a cryptogram
using more nested for loops. In the second and third quests, incorrect answers
resulted in decreasing player health.

Code Studio (Code Studio, 2015) it is the application connected to the
well known “Hour of Code” initiative, an introduction to computer science,
designed to demystify code and show that anybody can learn the basics using
Scratch. This global movement reaches tens of millions of students in different
countries. It is organized by Code.org. A coalition of partners have come toge-
ther to support the Hour of Code too, including Microsoft, Apple, and Amazon.

Prog & Play (Muratet et al., 2010), it is a real-time strategy game, whe-
re students write programs to control units in a battlefield. They can choose
which programming language they want to use amongst Ada, C, Java, OCaml,
Scratch and Compalgo. Prog&Play is a multiplayer game that allows students
to interact with each other.

Wu’s Castle (Eagle & Barnes, 2009) It is a 2D role playing game, develo-
ped in RPG Maker XP, where students program changes in loops and arrays in
an interactive, visual way. The game provides immediate feedback and helps
students visualize code execution in a safe environment. The player interacts
with the game in two ways: by manipulating an array through changing the
parameters within the loop or by moving the game’s character (wizard) throu-
gh executing nested loops. Wu’s Castle use the programming language C ++.

CoLoBot: Colonize with Bots (CoLoBot, 2013) it combines both a real
time 3D game of strategy and an initiation to programming. The player is at
the head of a space expedition and he is assisted only by some robots. The
mission consists in successive attempts at the exploration and colonization of
various planets. The player will have to search for the raw materials and energy
he needs in order to survive. CoLoBoT aims to teach students Object Oriented
programming style similar to C++ or Java.

PlayLogo3D (Paliokas et al., 2011), it is a 3D role playing game, especial-
ly designed for children aged 6-13 years in the early stages of programming
education. The scenario portrays the rivalry between pilot robots (players) in
the “spaceship X-15”. Although this is a multiplayer game, voice or text com-
munication between players is not allowed during the game, in order to allow
better concentration for learners. PlayLogo3D aspires to introduce the very ba-

132

PEER REVIEWED PAPERS
Vol. 12, n. 2, May 2016Je-LKS

sic concepts of structured programming using LOGO programming language.

RoboCode (O’Kelly & Gibson, 2006) Developed by IBM and released in
2001, Robocode is a game (and also a development environment) that aspires
to teach programming using Java language. During the game, the player tries
to program a robot that will fight another robot in a virtual arena. The concepts
taught by Robocode are the basic concepts of structured programming but
also the main structures of object-oriented programming such as inheritance,
polymorphism, etc.

M.U.P.P.E.T.S (Phelps et al., 2003) “The Multi-User Programming Peda-
gogy for Enhancing Traditional Study” is a web-based, collaborative three-
dimensional game that aims to teach the basic concepts of object-oriented
programming using exclusively the JAVA programming language. Students are
called to write and manipulate “objects” that can use them later in the game.
MUPPETS is inspired by Robocode, thus players create robots that will fight
in a virtual arena.

3.1 Proposed game
All the initiatives mentioned above propose a number of features that meet

the problems typically encountered in computer programming. They introduce
interesting notions such as attractive graphical interfaces, visual representation
of the programming tasks, interactive and interesting scenarios that keep the
learner immersed. We can distingue two categories of games, the first aims to
teach a specific computer programming unit like Catacombs and Saving Sera
from GAME2LEARN project, Prog & Play, Vu’s Castle and ColoBot while
the second category includes games that cover multiple pedagogical goals such
as PlayLogo3D, RoboCode and MUPPETS. These games attempt to motivate
learner by asking him to develop his own game, as in the case of Robocode
and MUPPETS, or in another approach, to play a game and code to progress,
in projects like GAME2LEARN, Prog & Play, etc.

Additionally, some games like Catacombs and Saving Sera use micro-lan-
guages to support students’ understanding of the logic behind the programming
elements, while others use a distinct programming language for teaching such
as Pascal, JAVA, C / C ++. We believe that is a challenging situation for the
learner. The algorithmic thinking is a key ability in informatics that can be
developed independently from learning programming (Futschek, 2006) and
dealing with the syntax of a particular programming language is an additional
charge, especially for novice learners that may discourage them and lead them
to give up learning. Besides, some games propose to learner filling the gaps or

Wassila Debabi, Tahar Bensebaa - Using Serious Game to enhance algorithmic learning and teaching

133

answer Multiple Choice Questions (MCQ), in this case, the learner can answer
randomly without truly learn nothing.

Our work is based on these tools; we are oriented towards the second ap-
proach, so we propose to teach algorithmic concepts through a serious game
that allows the learner to focus more on solving the problem rather than on the
syntax of the programming languages. Several common deficits in novices’
understanding of specific programming language constructs were pointed out
in many studies (Soloway & Spohrer, 1989; Jenkins, 2002) and inappropriate
analogies may be drawn from natural language (Soloway et al., op. cit.) lea-
ding learners to serious confusion. Another concern is about actions that take
place “behind the scene”: the abstraction is a powerful programming concept
but beginners face difficulties moving from the abstract toward the concrete
(Soloway et al., op. cit.). AlgoGame gives the player a dynamic translation
of his actions in the game into algorithmic instructions. Thus, students pass
the river between the tangible world and the abstract world of programming
environments and languages smoothly through the game.

AlgoGame is designed essentially for computer science students that are
coming into contact for the first time with this area. It aims to introduce them
to algorithmic concepts, to help them get acquainted with the way algorithms
are structured and also allow them to engage in algorithmic thinking. The
game has several levels; each one aspires to teach a basic algorithmic concept
(alternative “if”; iteration “loops”; sequence of command, etc) or an algorithm
that combines these concepts.

4 Methodological Framework

4.1 Constraints and specifications
The critical point of a serious game is the relationship between the game

and its educational content. Several experiments have shown that serious ga-
mes achieve their goals when they have a strong “game” component clearly
highlighted. Thus, serious games have double scripting. Actually, there are
two scenarios to design: a game scenario (explicit) in accordance with another
learning scenario (implicit). Our idea is that the game has n-different levels;
each level is dedicated (implicitly) to a learning goal. In each level, the game
simulates the algorithm’s behavior.

Another fundamental point is how to maintain the player’s motivation du-
ring the game. Immersion is a key point for motivation and collaboration. There
is also another aspect that must be considered. When students learn something
in a game, they need to transfer the acquired knowledge to real life. If the game
includes elements that match the real situation, this transfer will be simplified

134

PEER REVIEWED PAPERS
Vol. 12, n. 2, May 2016Je-LKS

(Carron et al., 2009). The authors give some guideline in order to take into
account the immersion feature as much as possible while designing the edu-
cational game (1) Develop a coherent world (2) Find the real places or people
usually involved in the learning process that you would like to integrate into
the game (3) Design an overall pedagogical scenario, a story, taking place in
the premises defined in the game design (4) Find which rules of the real world
you need to reproduce in the game (5) Define metaphors linked with the general
story and with the different learning objects. Thus, the serious game we want
to develop must meet the set of aforementioned constraints and specifications.

4.2 The Mechanics
Every game has a set of rules that indicates how it is meant to be played

by the players (the game mechanics) serving as a basis for the gameplay; the
serious game proposed in this paper is designed taking in consideration the
constraints and the specifications reported in (4.1.) to meet the aimed academic
objectives. This section will cover the core mechanics proposed for our game.

Proposed Core Mechanics: The main learning objective of the game is to
lead player to generate a coherent algorithm or a sequence of command throu-
gh his actions in the game. Each action made in the game generates a specific
command. This section describes the core elements of the game mechanics that
meet the aforementioned specifications.

• The game takes place in the computer science department. The main cha-
racter is a “Byte” (caricatured) who goes in the exploration of locations
after his escape from a student’s Personal Computer.

• The game is designed as a series of levels connected to explorable inter-
connected rooms. Each room includes a mission for a given algorithmic
concept.

• In every room, “Byte” discovers a mission (related to an algorithmic
concept or an algorithm). The resolution of a mission opens new ex-
plorable areas, before forbidden to access (next mission).

• During a mission, hints or non-player characters may appear in order to
guide the player, provide useful information, etc.

• While playing, the learner will visualize the transformation of his ac-
tions in the game to algorithmic commands in the right of the screen.
(concretize abstract concepts)

• The final score is calculated from the scores made during previous mis-
sions. The player has three lives for each mission. If completed suc-
cessfully, the full score is assigned, otherwise, a reduction of points
from the score until all lives are consumed.

• The teacher can add other concepts (according to his learning objective)

Wassila Debabi, Tahar Bensebaa - Using Serious Game to enhance algorithmic learning and teaching

135

and keep these same set of rules, just insert a new mission or redirect
the learner to specific missions.

5 Case Study
This section will describe a case study. In fact, AlgoGame has several levels;

each one related to a basic algorithmic concept (alternative “if”; iteration “lo-
ops”; sequence of command) or to an algorithm that combines these concepts.
We choose to describe the level connected to the “selection sort algorithm”,
since it allows us to illustrate several algorithmic concepts.

Fig. 1 - Third phase of the algorithm: Swap elements.

Gameplay. The player is situated in the Computer science department par-
king; he has to sort, within a given time, parked vehicles in garages. This
sorting will be done according to vehicle weight, from the least heavy to the
heaviest. To achieve this, the learner must complete a series of specific tasks
to establish the desired order before time limit; otherwise, the game is over.

The selection sort algorithm consists in sorting array elements in a given
order. In order to concretize the abstract concepts related to this algorithm, we
thought to materialize the array cells by garages and items by parked vehicles
within these garages.

Furthermore, the vehicle weight is not communicate to the player, we sug-
gest to indicate (graphically) only, the number of the least heavy truck, so the
player has no choice other than browse all the vehicles to determine the mini-
mum, as this actually happens in the algorithm.

To swap two vehicles, the player must go through an intermediate zone
because the road leading to the various garages passes one vehicle at a time.
This operation allows the learner to get aware of the “machine” constraints, i.e.

136

PEER REVIEWED PAPERS
Vol. 12, n. 2, May 2016Je-LKS

the need to use temporary variable when swapping two elements.
Every action made in the game generates an algorithmic command which

appears at the right of the screen, until the whole algorithm is constructed.
The game includes explanatory messages that assist students in understan-

ding the theory while playing, such as the hints with indexes of the array. Be-
sides, the selection sort algorithm goes by three phases (1) Select an element
(2) Find the minimum or the maximum (3) Swap the tow elements. In order to
highlight these phases, the player is informed each time he goes through one
of them.

6 Experimental Results
This experiment took place with first year students learning computer scien-

ce at the Preparatory School in Sciences and Techniques, Annaba. We chose 33
volunteers students. Students were novice at the time of the experiment; they
did not know any sorting algorithm.

Fig. 2 - Experimental design

The control group of students (n=16) were asked to write an algorithm of

sorting without knowing about the game, only an explanation of the algorithm’s
principle was given.

The experimental group (n=17) were asked to proceed as following:
• Playing the game (AlgoGame) for 30 minutes,
• Write the sorting algorithm.

Wassila Debabi, Tahar Bensebaa - Using Serious Game to enhance algorithmic learning and teaching

137

Table 1
DESCRIPTIVE STATISTICS

Control group
Experimental

group
Mean 0.45 1.13

SD 0.92 1.28

median 0.00 0.88

Max 3.75 4.00

Min 0.00 0.00

As previously said, both experimental and control groups were asked to
write a sort algorithm in the end of the session, the figure below shows the score
made by each group after correction of the produced algorithms by the teacher.

Fig. 3 - Score Control group VS Experimental group

We notice that the experimental group has a better Mean comparing to the
control group (Table 1, Figure 3). Even if with a small experimental group,
our results were encouraging and positive and show that students who play-
ed AlgoGame produced a better resolution of the problem. Thus, we aim to
extend this experience to a larger population in order to discuss and validate
the learning outcomes.

Conclusions and future work
AlgoGame is a novel way for learning and teaching algorithmic bases that

has been presented in this paper. Our principal concern was to reduce the ab-

138

PEER REVIEWED PAPERS
Vol. 12, n. 2, May 2016Je-LKS

straction and help students to make relation between their real world and the
abstract algorithmic concepts. Also, it allows them to realize that a problem
can be divided into simpler sub problems by highlighting the algorithm’s steps
when the player goes through them. The game discharge student from syntax
and debug errors, thus the algorithms are not constructed by typing text or
arranging icons but by taking actions in the game.

At this moment, a game prototype was implemented but teacher interfa-
ce and features are in progress. This one will allow the teacher adding new
concepts or modify the existing levels’ sequence according to his learning
objective.

In the next step, we aim to incorporate our game into an Adaptive Online
Distance Learning platform to insure the adaptation of the learning scenario
(and consequently the game scenario) according to learners needs. Actually, the
diversity of learners, this phenomenon found in all classrooms fact that each
learner is characterized by some diversity in the results, abilities, interests, mo-
tivation and needs. Our goal is the contextualization and the individualization
of the gaming experience and therefore learning experience for each learner
according to his own needs.

REFERENCES

Barnes, T., Chaffin, A., Powell, E., Lipford, H. (2008), Game2Learn: Improving the
motivation of CS1 students, in: Proceedings of 3rd international conference on
Game development in computer science education.1-5.

Boyle, E., Connolly, T. M., & Hainey, T. (2011), The role of psychology in understanding
the impact of computer games. Entertainment Computing, 2(2), 69-74.

Coelho, A., Kato, E., Xavier, J., & Gonçalves, R. (2011), Serious game for introductory
programming. In Serious Games Development and Applications(pp. 61-71).
Springer Berlin Heidelberg.

Code Studio: https://studio.code.org/. Accessed 28 August 2015.
CoLoBoT : http ://www.ceebot.com/colobot/index-e.php. Accessed 18 September 2013.
Eagle, M., Barnes, T.(2009), Experimental evaluation of an educational game for

improved learning in introductory computing. ACM SIGCSE Bulletin 41(1), 321-
325.

Esteves, M., Fonseca, B., Morgado, L. & Martins, P. (2008), Contextualization of
programming learning: a virtual environment study, in: Proceedings of 38th ASEE/
IEEE Frontiers in Education Conference. 17–22,Washington, DC: IEEE.

Esteves, M., Fonseca, B., Morgado, L., & Martins, P. (2011), Improving teaching and
learning of computer programming through the use of the Second Life virtual world.
British Journal of Educational Technology, 42(4), 624-637.

Futschek, G. (2006), Algorithmic Thinking: The Key for Understanding Computer

Wassila Debabi, Tahar Bensebaa - Using Serious Game to enhance algorithmic learning and teaching

139

Science. Springer-Verlag Berlin Heidelberg 2006, pp. 159–168.
Garris, R., Ahlers, R., & Driskell, J. E. (2002), Games, motivation, and learning: A

research and practice model. Simulation & gaming, 33(4), 441-467.
Henriksen, P., Kölling, M. (2004), Greenfoot: Combining Object Visualization with

Interaction, in: Proceedings of 19th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Applications. 73-82.

Jenkins, T. (2002), On the difficulty of learning to program, in: Loughborough
University, UK, 3rd Annual LTSN_ICS Conference. 53–58, The Higher Education
Academy.

JISC: Joint Information Systems Committee. (2007), Game-based learning:
briefing paper (online): http://www.jisc.ac.uk/media/documents/publications/
gamingreportbp.pdf

Kaasbøll, J. J. (1998), Exploring didactic models for programming. In NIK 98–
Norwegian Computer Science Conference. p.p. 195-203.

Kehoe, C., Stasko, J. & Taylor, A. (2001), Rethinking the evaluation of algorithm
animations as learning aids: an observational study. Journal of Human-Computer
Studies (2001) 54, p.p. 265-284

Kelleher, C., Cosgrove, D., Culyba, D., Forlines, C., Pratt, J. & Pausch, R. (2002),
Alice2: Programming without syntax errors, in: Proceedings of 15th annual
symposium on the User Interface Software and Technology.

Klopfer, E., Yoon, S. (2004), Developing games and simulations for today and
tomorrow’s tech savvy youth. TechTrends, 49(3), 33–41.

Lahtinen, E., Mutka, K. A. & Jarvinen, H. M. (2005), A study of the difficulties of
novice programmers, in: Proceedings of 10th Annual Conference on Innovation
and Technology in Computer Science Education. 14–18, NewYork: ACM Press.

Maloney, J., Burd, L., Kafai, Y., Rusk, N. Silverman, B. & Resnick, M. (2004), Scratch:
A sneak preview, in: Proceedings of 2nd International Conference on Creating
Connecting, and Collaborating through Computing. 104–109. IEEE Computer
Society.

Miliszewska, I. & Tan, G. (2007), Befriending computer programming: a proposed
approach to teaching introductory programming. Journal of Issues in Informing
Science & Information Technology, 4, 277–289.

Motil, J. & Epstein, D. (2000), Jr: a language designed for beginners (less is more).
Retrieved July 10, 2014, from http://www.csun.edu/~jmotil/BeginLanguageJr.pdf

Muratet, M., Torguet, P., Viallet, F & Jessel, J.P. (2010), Experimental feedback on
Prog&Play, a serious game for programming practice, Eurographics, 1-8.

O’Kelly, J. & Gibson, J. P. (2006), RoboCode & problem-based learning: a non-
prescriptive approach to teaching programming, in: Proceedings of Conference on
Innovation and Technology in Computer Science Education. 217–221. NY: ACM.

Olapiriyakul, K. & Scher, J. M. (2006), A guide to establishing hybrid learning courses:
employing information technology to create a new learning experience, and a case
study. The Internet and Higher Education, 9, 287–301.

Paliokas, I., Arapidis, C. & Mpimpitsos, M. (2011), PlayLOGO 3D: A 3D interactive

140

PEER REVIEWED PAPERS
Vol. 12, n. 2, May 2016Je-LKS

video game for early programming education, in: Proceedings of 3rd International
Conference on Games and Virtual Worlds for Serious Applications. 24-31.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin,
M. & Paterson, J. (2007), A survey of literature on the teaching of introductory
programming. ACM SIGCSE Bulletin, 39(4), 204–223.

Phelps, A.M. Bierre, K.J. & Parks, D.M. (2003), MUPPETS: multi-user programming
pedagogy for enhancing traditional study, in: Proceedings of 4th conference on
Information technology education. 100-105.

Ragonis, N., Ben-Ari, M. (2005), A long-Term Investigation of the Comprehension by
Novices, Computer Science Education, 15(3), 203-221.

Robins, A., Rountree, J. & Rountreen, N. (2003), Learning and teaching programming:
a review and discussion. Computer Science Education, 13(2), 137–172.

Rogalski, J., & Samurc¸ ay, R. (1990), Acquisition of programming knowledge and
skills. In: J.M. Hoc, T.R.G. Green, R. Samurc¸ ay, & D.J. Gillmore (Eds.),Psychology
of programming (pp. 157 –174). London: Academic Press.

Shaffer, C. A., Cooper, M. L., Alon, A. J. D., Akbar, M., Stewart, M., Ponce, S.,
& Edwards, S. H. (2010), Algorithm visualization: The state of the field. ACM
Transactions on Computing Education (TOCE), 10(3), 9.

Schulte, C. & Bennedsen, J. (2006), What do teachers teach in introductory
programming? In: Canterbury, UK, 2ed International Workshop on Computing
Education Research. 17–28, New York: ACM.

Soloway, E. & Spohrer, J. (1989), Studying the Novice Programmer, Lawrence Erlbaum
Associates, Hillsdale, New Jersey. p.497.

