Main Article Content

Abstract

This paper presents a Systematic Literature Review on the challenges that Artificial Intelligence (AI) poses in the field of education, specifically, on teaching and learning processes. Based on an exhaustive search in the Web of Science and Scopus databases, 1657 articles published between 2010 and 2024 were initially selected to be examined. The final sample consisted of 52 studies. To achieve this goal, the PRISMA 2020 protocol was employed. Identified challenges are grouped into several key categories. In pedagogical terms, the need to adapt teaching methods and curricula to leverage AI capabilities is highlighted, as well as the importance of maintaining a balance between AI-assisted teaching and human interaction. Additionally, training teachers to use these tools effectively is also considered as a significant obstacle to integrate the new ecology of learning. Finally, there are also ethical and social challenges that address concerns about the privacy of student data, equity in access to advanced technologies, and the potential of AI to perpetuate existing biases. Transparency in the operation of AI systems and the involvement of educational stakeholders are crucial to mitigating these risks. In conclusion, although AI has the potential to transform new ways of teaching and learning. These challenges encourage new paradigms where learning will be more flexible and closer to people's interests. Therefore, AI is not inherently good or bad; rather, it is the way we use it that will be the true key to promoting or not promoting changes in educational paradigms.

Keywords

Artificial Intelligence Teaching and Learning Learning Ecology Engagement Systematic Literature Review

Article Details

How to Cite
Arriazu, R. (2025). The daunting challenge of Artificial Intelligence in Education: a systematic literature review. Journal of E-Learning and Knowledge Society, 21(1). https://doi.org/10.20368/1971-8829/1135992

References

  1. Ahmad, K., Iqbal, W., El-Hassan, A., Qadir, J., Benhaddou, D., Ayyash, M., & Al-Fuqaha, A. (2024). Data-Driven Artificial Intelligence in Education: A Comprehensive Review. IEEE Transactions on Learning Technologies, 17, 12-31. https://doi.org/10.1109/TLT.2023.3314610
  2. Ahmad, N., Murugesan, S., & Kshetri, N. (2023). Generative Artificial Intelligence and the Education Sector. Computer, 56(6), 72-76. https://doi.org/10.1109/MC.2023.3263576
  3. Akiba, D., & Fraboni, M. C. (2023). AI-Supported Academic Advising: Exploring ChatGPT’s Current State and Future Potential Toward Student Empowerment. Education Sciences, 13(9). https://doi.org/10.3390/educsci13090885
  4. Allen, B., McGough, A. S., & Devlin, M. (2022). Toward a Framework for Teaching Artificial Intelligence to a Higher Education Audience. ACM Transactions on Computing Education, 22(2). https://doi.org/10.1145/3485062
  5. Baesler, S.-A., & Sasaki, F. (2020). Interactive Learning Media: Designing Digital Educational Media with Artificial Intelligence. Information-Wissenschaft Und Praxis, 71(1), 39-42. https://doi.org/10.1515/iwp-2019-2059
  6. Barakina, E. Y., Popova, A., V., Gorokhova, S. S., & Voskovskaya, A. S. (2021). Digital Technologies and Artificial Intelligence Technologies in Education. European Journal Of Contemporary Education, 10(2), 285-296. https://doi.org/10.13187/ejced.2021.2.285
  7. Barron, B. (2006). Interest and Self-sustained Learning as Catalysts of development: A Learning Ecologies Perspective. Human Development, 49(4), 193-224.
  8. Berendt, B., Littlejohn, A., & Blakemore, M. (2020). AI in Education: Learner Choice and Fundamental Rights. Learning, Media and Technology, 312-324. https://doi.org/10.1080/17439884.2020.1786399
  9. Booth, G. J., Ross, B., Cronin, W. A., McElrath, A., Cyr, K. L., Hodgson, J. A., Sibley, C., Ismawan, J. M., Zuehl, A., Slotto, J. G., Higgs, M., Haldeman, M., Geiger, P., & Jardine, D. (2023). Competency-Based Assessments: Leveraging Artificial Intelligence to Predict Subcompetency Content. Academic Medicine, 98(4), 497-504. https://doi.org/10.1097/ACM.0000000000005115
  10. Brymer, E., & Schweitzer, R. D. (2022). Learning Clinical Skills: An Ecological Perspective. Advances in Health Sciences Education, 27(3), 691–707. https://doi.org/10.1007/s10459-022-10115-9
  11. Carin, L. (2020). On Artificial Intelligence and Deep Learning Within Medical Education. Academic Medicine, 95(11), S10-S11. https://doi.org/10.1097/ACM.0000000000003630
  12. Celik, I. (2023). Exploring the Determinants of Artificial Intelligence (AI) Literacy: Digital Divide, Computational Thinking, Cognitive Absorption. Telematics and Informatics, 83. https://doi.org/10.1016/j.tele.2023.102026
  13. Chiu, T. K. F., Sun, J. C.-Y., Ismailov, M., & Ismailov, M. (2022). Investigating the Relationship of Technology Learning Support to Digital Literacy From the Perspective of Self-determination Theory. Educational Psychology.42(10), 1263-1282. https://doi.org/10.1080/01443410.2022.2074966
  14. Chocarro, R., Cortiñas, M., & Marcos-Matás, G. (2023). Teachers’ Attitudes Towards Chatbots In Education: A Technology Acceptance Model Approach Considering The Effect Of Social Language, Bot Proactiveness, and Users’ Characteristics. Educational Studies, 49(2), 295-313. https://doi.org/10.1080/03055698.2020.1850426
  15. Civaner, M. M., Uncu, Y., Bulut, F., Chalil, E. G., & Tatli, A. (2022). Artificial intelligence in medical education: A cross-sectional needs assessment. BMC Medical Education, 22(1). https://doi.org/10.1186/s12909-022-03852-3
  16. Coll, C. (2013). Las Ecologías del Aprendizaje en la Sociedad Del Conocimiento. Universidades, 55, 34-49.
  17. Cornejo-Plaza, I., & Cippitani, R. (2023). Ethical and Legal Considerations of Artificial Intelligence in Higher Education: Challenges and Prospects. Revista de Educacion y Derecho, 28. https://doi.org/10.1344/REYD2023.28.43935
  18. Crompton, H., & Burke, D. (2023). Artificial Intelligence In Higher Education: The State Of The Field. International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/s41239-023-00392-8
  19. Cukurova, M., Luckin, R., & Kent, C. (2020). Impact of an Artificial Intelligence Research Frame on the Perceived Credibility of Educational Research Evidence. International Journal of Artificial Intelligence in Education, 30(2), 205-235. https://doi.org/10.1007/s40593-019-00188-w
  20. Danielsson, A. T., King, H., Godec, S., & Nyström, A.-S. (2023). The Identity Turn in Science Education Research: A Critical Review of Methodologies in a consolidating Field. Cultural Studies of Science Education, 1–60. https://doi.org/10.1007/s11422-022-10130-7
  21. Demir, K., & Güraksın, G. E. (2022). Determining Middle School Students’ Perceptions of the Concept of Artificial Intelligence: A Metaphor Analysis. Participatory Educational Research, 9(2), 297-312. https://doi.org/10.17275/per.22.41.9.2
  22. Diaz Tito, L. P., Tito Cárdenas, J. V., García Curo, G., & Boy Barreto, A. M. (2021). Artificial Intelligence Applied to the Education Sector. Revista Venezolana de Gerencia, 26(96), 1189-1200. https://doi.org/10.52080/rvgluz.26.96.12
  23. Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary Perspectives on Emerging Challenges, Opportunities, and Agenda for Research, Practice and Policy. International Journal of Information Management, 57. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  24. Flores-Vivar, J.-M., & García-Peñalvo, F.-J. (2023). Reflections on the Ethics, Potential, and Challenges of Artificial Intelligence in the Framework of Quality Education (SDG4). Comunicar, 30(74), 35-44. https://doi.org/10.3916/C74-2023-03
  25. García-Peñalvo, F. J., Llorens-Largo, F., & Vidal, J. (2024). The New Reality of Education in the Face of Advances in Generative Artificial Intelligence. RIED-Revista Iberoamericana de Educacion a Distancia, 27(1), 9-39. https://doi.org/10.5944/ried.27.1.37716
  26. Grabinska, B., Andrzejewski, M., & Grabinski, K. (2021). The Students’ and Graduates’ Perception of the Potential Usefulness of Artificial Intelligence (AI) in the Academic Curricula of Finance And Accounting Courses. E-MENTOR, 5, 16-25. https://doi.org/10.15219/em92.1544
  27. Gough, D. (2017). An Introduction to Systematic Reviews. Sage. London, UK.
  28. Grunhut, J., Marques, O., & Wyatt, A. T. M. (2022). Needs, Challenges, and Applications of Artificial Intelligence in Medical Education Curriculum. JMIR Medical Education, 8(2). Scopus. https://doi.org/10.2196/35587
  29. Guleria, P., & Sood, M. (2023). Explainable AI and Machine Learning: Performance Evaluation and Explainability of Classifiers on Educational Data Mining Inspired Career Counseling. Education and Information Technologies, 28(1), 1081-1116. https://doi.org/10.1007/s10639-022-11221-2
  30. Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R Package and Shiny App For Producing Prisma 2020-Compliant Flow Diagrams, with Interactivity For Optimised Digital Transparency and Open Synthesis. Campbell Systematic Reviews, 18, 1230. https://doi.org/10.1002/cl2.1230
  31. Han, E.-R., Yeo, S., Kim, M.-J., Lee, Y.-H., Park, K.-H., & Roh, H. (2019). Medical Education Trends for Future Physicians in the Era of Advanced Technology and Artificial Intelligence: An Integrative Review. BMC Medical Education, 19(1). https://doi.org/10.1186/s12909-019-1891-5
  32. Han, J.-W., Park, J., & Lee, H. (2022). Analysis of the Effect of an Artificial Intelligence Chatbot Educational Program on Non-Face-To-Face Classes: A Quasi-Experimental Study. BMC Medical Education, 22(1). https://doi.org/10.1186/s12909-022-03898-3
  33. Harari, Y. N. (2017). Reboot for the AI Revolution. Nature, 550(7676), 324-327. https://doi.org/10.1038/550324a
  34. Hinojo-Lucena, F. J., Aznar-Díaz, I., & Cáceres-Reche, M. P. (2019). Influence of Flipped Classroom on Academic Performance: A Systematic Review. Campus Virtuales, 8(1), 9-18.
  35. How, M.-L., & Hung, W. L. D. (2019). Educing AI-Thinking in Science, Technology, Engineering, Arts, and Mathematics (Steam) Education. Education Sciences, 9(3). https://doi.org/10.3390/educsci9030184
  36. Hung, J., & Chen, J. (2023). The Benefits, Risks and Regulation of Using ChatGPT in Chinese Academia: A Content Analysis. Social Sciences, 12(7). https://doi.org/10.3390/socsci12070380
  37. Kahn, K., & Winters, N. (2021). Constructionism and AI: A History and Possible Futures. British Journal of Educational Technology, 52(3), 1130-1142. https://doi.org/10.1111/bjet.13088
  38. Kashiwa, M., & Benson, P. (2018). A Road and a Forest: Conceptions of In-Class and Out-of-Class Learning in the Transition to Study Abroad. TESOL Quarterly, 52(4), 725-747.
  39. Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele University. Keele, UK.
  40. Knopp, M. I., Warm, E. J., Weber, D., Kelleher, M., Kinnear, B., Schumacher, D. J., Santen, S. A., Mendonça, E., & Turner, L. (2023). AI-Enabled Medical Education: Threads of Change, Promising Futures, and Risky Realities Across Four Potential Future Worlds. JMIR Medical Education, 9(1). https://doi.org/10.2196/50373
  41. Knox, J. (2020). Artificial Intelligence and Education in China. Learning, Media and Technology, 45(3), 298-311. https://doi.org/10.1080/17439884.2020.1754236
  42. Liu, M., Ren, Y., Nyagoga, L. M., Nyagoga, L. M., Yu, L. (2023). Future of Education in the Era of Generative Artificial Intelligence: Consensus Among Chinese Scholars on Applications of Chatgpt in Schools. Future In Educational Research, 1(1), Article e10. https://doi.org/10.1002/fer3.10
  43. Lee, J., Wu, A. S., Li, D., & Kulasegaram, K. (2021). Artificial Intelligence in Undergraduate Medical Education: A Scoping Review. Academic Medicine, 96(11S), S62-S70. https://doi.org/10.1097/ACM.0000000000004291
  44. Manca, S., & Raffaghelli, J. (2023). An Examination of Learning Ecologies Associated with the Holocaust: The role of social media. Journal of Computer Assisted Learning, 39(6), 1874-1887. https://doi.org/10.1111/jcal.12848
  45. Mangera, E., Supratno, H., & Suyatno. (2023). Exploring the Relationship between Transhumanist and Artificial Intelligence in the Education Context: Particularly Teaching and Learning Process at Tertiary Education. Pegem Egitim Ve Ogretim Dergisi, 13(2), 35-44. https://doi.org/10.47750/pegegog.13.02.05
  46. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The Prisma statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
  47. Murugesan, S., Cherukuri, A. K., Hurlburt, G., & Reisman, S. (2023). The Rise of Generative Artificial Intelligence and Its Impact on Education: The Promises and Perils. Computer, 56(5), 116-121. https://doi.org/10.1109/MC.2023.3253292
  48. Ni, A., & Cheung, A. (2023). Understanding Secondary students’ Continuance Intention to Adopt AI-Powered Intelligent Tutoring System for English Learning. Education and Information Technologies, 28(3), 3191-3216. https://doi.org/10.1007/s10639-022-11305-z
  49. Nikonova, E., Yakhyaeva, K., Pivkina, N., & Schetinina, A. (2023). Using Artificial Intelligence Tools in Teaching a Foreign Language in Higher Technical Institutions. European Journal Of Contemporary Education, 12(2), 578-589. https://doi.org/10.13187/ejced.2023.2.578
  50. North, C., Hills, D., Maher, P., Farkic, J., Zeilmann, V., Waite, S., Takano, T., Prince, H., Gurholt, K. P., Muthomi, N., Njenga, D., Karaka-Clarke, T. H., Mackenzie, S. H., & French, G. (2024). The Impact of Artificial Intelligence on Adventure Education and Outdoor Learning: International Perspectives. Journal of Adventure Education And Outdoor Learning, 24(1), 123-140. https://doi.org/10.1080/14729679.2023.2248302
  51. Parapadakis, D. (2020). Can Artificial Intelligence Help Predict a Learner’s Needs? Lessons from Predicting Student Satisfaction. London Review of Education, 18(2), 178-195. https://doi.org/10.14324/LRE.18.2.03
  52. Popenici, S. A. D., & Kerr, S. (2017). Exploring the Impact of Artificial Intelligence on Teaching and Learning in Higher Education. Research and Practice in Technology Enhanced Learning, 12(1). https://doi.org/10.1186/s41039-017-0062-8
  53. Petticrew, M. (2006). Systematic Reviews in the social sciences: A practical guide. Blackwell Publishing. Malden, MA.
  54. Puerto, D. A., & Gutiérrez-Esteban, P. (2022). Artificial Intelligence as an Educational Resource during Preservice Teacher Training. RIED-Revista Iberoamericana de Educacion a Distancia, 25(2), 347-362. https://doi.org/10.5944/ried.25.2.32332
  55. Ratten, V., & Jones, P. (2023). Generative Artificial Intelligence (Chatgpt): Implications For Management Educators. International Journal of Management Education, 21(3). https://doi.org/10.1016/j.ijme.2023.100857
  56. Scherr, R., Halaseh, F. F., Spina, A., Andalib, S., & Rivera, R. J. (2023). ChatGPT Interactive Medical Simulations For Early Clinical Education: Case study. JMIR Medical Education, 9(1), e49877. https://doi.org/10.2196/49877
  57. Schiff, D. (2021). Out of the Laboratory and into the Classroom: The Future of Artificial Intelligence in Education. AI & Society, 36(1), 331-348. https://doi.org/10.1007/s00146-020-01033-8
  58. Shaby, N., Staus, N., Dierking, L. D., & Falk, J. H. (2021). Pathways of Interest and Participation: How STEM-Interested Youth Navigate a Learning Ecosystem. Science Education, 105(4), 628-652. https://doi.org/10.1002/sce.21621
  59. Sun, G. H., & Hoelscher, S. H. (2023). The ChatGPT Storm and What Faculty Can Do. Nurse Educator, 48(3), 119-124. https://doi.org/10.1097/NNE.0000000000001390
  60. Teng, M., Singla, R., Yau, O., Lamoureux, D., Gupta, A., Hu, Z., Hu, R., Aissiou, A., Eaton, S., Hamm, C., Hu, S., Kelly, D., MacMillan, K. M., Malik, S., Mazzoli, V., Teng, Y.-W., Laricheva, M., Jarus, T., & Field, T. S. (2022). Health Care Students’ Perspectives on Artificial Intelligence: Countrywide Survey in Canada. JMIR Medical Education, 8(1). https://doi.org/10.2196/33390
  61. Tolentino, R., Baradaran, A., Gore, G., Pluye, P., & Abbasgholizadeh-Rahimi, S. (2023). Curriculum Frameworks and Educational Programs in Artificial Intelligence for Medical Students, Residents, and Practicing Physicians: A Scoping Review Protocol. JBI Evidence Synthesis, 21(7), 1477-1484. https://doi.org/10.11124/JBIES-22-00374
  62. Wang, Y. (2023). Artificial Intelligence Technologies in College English Translation Teaching. Journal of Psycholinguistic Research, 52(5), 1525-1544. https://doi.org/10.1007/s10936-023-09960-5
  63. Weidener, L., & Fischer, M. (2023). Artificial Intelligence Teaching as Part of Medical Education: Qualitative Analysis of Expert Interviews. JMIR Medical Education, 9. https://doi.org/10.2196/46428
  64. Wood, D. A., Achhpilia, M. P., Adams, M. T., Aghazadeh, S., Akinyele, K., Akpan, M., Allee, K. D., Allen, A. M., Almer, E. D., Ames, D., Arity, V., Barr-Pulliam, D., Basoglu, K. A., Belnap, A., Bentley, J. W., Berg, T., Berglund, N. R., Berry, E., Bhandari, A., Zoet, E. (2023). The ChatGPT Artificial Intelligence Chatbot: How Well Does It Answer Accounting Assessment Questions? Issues in Accounting Education, 38(4), 81-108. https://doi.org/10.2308/ISSUES-2023-013
  65. Xu, X., Dugdale, D. M., Wei, X., & Mi, W. (2023). Leveraging Artificial Intelligence to Predict Young Learner Online Learning Engagement. American Journal of Distance Education, 37(3), 185-198. https://doi.org/10.1080/08923647.2022.2044663
  66. Zaki, N., Turaev, S., Shuaib, K., Krishnan, A., & Mohamed, E. (2023). Automating the Mapping Of Course Learning Outcomes to Program Learning Outcomes Using Natural Language Processing for Accurate Educational Program Evaluation. Education and Information Technologies, 28(12), 16723-16742. https://doi.org/10.1007/s10639-023-11877-4
  67. Zaleski, A. L., Berkowsky, R., Craig, K. J. T., & Pescatello, L. S. (2024). Comprehensiveness, Accuracy, and Readability of Exercise Recommendations Provided by an AI-Based Chatbot: Mixed Methods Study. JMIR Medical Education, 10(1). https://doi.org/10.2196/51308
  68. Zhu, M., Wang, G., Li, C., Wang, H., & Zhang, B. (2023). Artificial Intelligence Classification Model for Modern Chinese Poetry in Education. Sustainability, 15(6). https://doi.org/10.3390/su15065265

DB Error: Unknown column 'Array' in 'where clause'