Main Article Content
Abstract
Education is a cornerstone of societal progress, equipping people with essential skills and knowledge. In today’s dynamic global society, personalized learning experiences are crucial. Data-driven methodologies, especially Educational Data Mining (EDM), play pivotal roles. This study employs machine learning algorithms to predict specializations for Greek high school students based on their previous grades. The aim is to provide a practical tool for educators and parents, aiding in the optimal selection of specializations. The paper outlines the methodology, presents comparative study results, and concludes with insights into the potential impact on educational decision-making. This research advances the integration of data-driven approaches in education, enhancing students’ learning experiences and prospects.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The author declares that the submitted to Journal of e-Learning and Knowledge Society (Je-LKS) is original and that is has neither been published previously nor is currently being considered for publication elsewhere.
The author agrees that SIe-L (Italian Society of e-Learning) has the right to publish the material sent for inclusion in the journal Je-LKS.
The author agree that articles may be published in digital format (on the Internet or on any digital support and media) and in printed format, including future re-editions, in any language and in any license including proprietary licenses, creative commons license or open access license. SIe-L may also use parts of the work to advertise and promote the publication.
The author declares s/he has all the necessary rights to authorize the editor and SIe-L to publish the work.
The author assures that the publication of the work in no way infringes the rights of third parties, nor violates any penal norms and absolves SIe-L from all damages and costs which may result from publication.
The author declares further s/he has received written permission without limits of time, territory, or language from the rights holders for the free use of all images and parts of works still covered by copyright, without any cost or expenses to SIe-L.
For all the information please check the Ethical Code of Je-LKS, available at http://www.je-lks.org/index.php/ethical-code
References
- Alani, J., Yawe, B., & Mutenyo, J. (2022). Role of Higher Education Growth in Enhancing Economic Growth, Innovation Advancement and Technological Progress in Uganda (1970–2014). The uganda Higher Education Review, 10, pp. 1-18. doi:10.58653/nche.v10i1.01
- Aldowah, H., Al-Samarraie, H., & Fauzy, W. (2019). Educational Data Mining and Learning Analytics for 21st century higher education: A Review and Synthesis. Telematics and Informatics. doi:10.1016/j.tele.2019.01.007
- Altabrawee, H., Ali, O., & Qaisar, S. (2019). Predicting Students’ Performance Using Machine Learning Techniques. JOURNAL OF UNIVERSITY OF BABYLON for pure and applied sciences, 27, pp. 194-205. doi:10.29196/jubpas.v27i1.2108
- Amelia, N., Gafar Abdullah, A., Mulyadi, Y., & Ijost, I. (2019). Meta-analysis of Student Performance Assessment Using Fuzzy Logic. Indonesian Journal of Science and Technology, 4, pp. 74-88. doi:10.17509/ijost.v4i1.15804
- Amrieh, E., Hamtini, T., & Aljarah, I. (2016). Mining Educational Data to Predict Student’s academic Performance using Ensemble Methods. International Journal of Database Theory and Application, 9, pp. 119-136. doi:10.14257/ijdta.2016.9.8.13
- Antonello, F., Baraldi, P., Abdelaleem, A., Zio, E., Gentile, U., & Serio, L. (2021). A Novel Association Rule Mining Method for the Identification of Rare Functional Dependencies in Complex Technical Infrastructures from Alarm Data. Expert Systems with Applications. doi:10.1016/j.eswa.2021.114560
- Baker, R., & Yacef, K. (2009). The State of Educational Data Mining in 2009: A Review and Future Visions. Journal of Educational Data Mining, pp. 3-17. doi:10.5281/zenodo.3554657
- Breiman, L. (2001). Random Forests. Machine Learning, pp. 5-32. doi:10.1023/A:1010950718922
- Chalaris, M., Gritzalis, S., Maragoudakis, M., Sgouropoulou, C., & Tsolakidis, A. (2014). Improving Quality of Educational Processes Providing New Knowledge Using Data Mining Techniques. Procedia - Social and Behavioral Sciences, 147. doi:10.1016/j.sbspro.2014.07.117
- Chang, V., Chen, Y., & Xiong, C. (2018). Dynamic Interaction between Higher Education and Economic Progress: A Comparative Analysis of BRICS Countries. Information Discovery and Delivery, 46. doi:10.1108/IDD-07-2018-0023
- Chen, K., Abtahi, F., Carrero, J.-J., Fernandez-Llatas, C., & Seoane, F. (2023). Process mining and data mining applications in the domain of chronic diseases: A systematic review. Artificial Intelligence in Medicine, 144, p. 102645. doi:10.1016/j.artmed.2023.102645
- Clark, P., & Niblett, T. (1989). The CN2 Induction Algorithm. Machine Learning, pp. 261-283. doi:10.1023/A:1022641700528
- Correa-Morris, J., Urra Yglesias, A., & Puente, O. (2023). Hybrids of K-means and linkage algorithms., (pp. 10-17). doi:10.1109/ICAMCS59110.2023.00010
- Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, pp. 273-297. doi:10.1007/BF00994018
- Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Trans. Inf. Theory, pp. 21-27. doi:10.1109/TIT.1967.1053964
- Demšar, J., Curk, T., Erjavec, A., Gorup, C., Hocevar, T., Milutinovic, M., . . . Zupan, B. (2013). Orange: Data Mining Toolbox in Python. Journal of Machine Learning Research, pp. 2349-2353.
- Dol Aher, S., & Jawandhiya, P. (2023). fication Technique and its Combination with Clustering and Association Rule Mining in Educational Data Mining — A survey. Engineering Applications of Artificial Intelligence, 122, p. 106071. doi:10.1016/j.engappai.2023.106071
- Gobert, J., Kim, Y. J., Pedro, M., Kennedy, M., & Betts, C. (2015). Using educational data mining to assess students’ skills at designing and conducting experiments within a complex systems microworld. Thinking Skills and Creativity, 18. doi:10.1016/j.tsc.2015.04.008
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
- Gushchina, O., & Ochepovsky, A. (2020). Data mining of students’ behavior in E-learning system. Journal of Physics: Conference Series, 1553, p. 012027. doi:10.1088/1742-6596/1553/1/012027
- Hartigan, J., & Wong, M. (1979). Algorithm AS 136: A K-Means Clustering Algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics, 28, pp. 100--108.
- Hosmer, J. D., Lemeshow, S., & Sturdivant, R. (2013). Applied Logistic Regression. John Wiley & Sons.
- Jin, C., Li, F., Ma, S., & Wang, Y. (2022). Sampling scheme-based classification rule mining method using decision tree in big data environment. Knowledge-Based Systems, 244, p. 108522. doi:https://doi.org/10.1016/j.knosys.2022.108522
- Jin, X., & Hu, H. (2022). Research and implementation of smart energy investment and financing system design based on energy mega data mining. Energy Reports, 8, pp. 1226-1235. doi:10.1016/j.egyr.2022.02.044
- Jothi, N., Abdul Rashid, N., & Husain, W. (2015). Data Mining in Healthcare – A Review. Procedia Computer Science, 72, pp. 306-313. doi:10.1016/j.procs.2015.12.145
- Kallio, R. (1995). Factors influencing the college choice decisions of graduate students. Research in Higher Education, pp. 109-124. doi:10.1007/BF02207769
- Kaur, P., Singh, M., & Josan, G. (2015). Classification and Prediction Based Data Mining Algorithms to Predict Slow Learners in Education Sector. Procedia Computer Science, 57, pp. 500-508. doi:10.1016/j.procs.2015.07.372
- Kilag, O. K., Comighud, E., Amontos, C., Damos, M., & Abendan, C. F. (2023). Empowering Teachers: Integrating Technology into Livelihood Education for a Digital Future. Journal of Education, Excellencia.
- Kurnia, R. (2021). A Case for Mezirow’s Transformative Learning. Diligentia: Journal of Theology and Christian Education, p. 73. doi:10.19166/dil.v3i1.2945
- Mittal, S., Shuja, M., & Zaman, M. (2016). A Review of Data Mining Literature. IJCSIS, 14, pp. 437-442.
- Mohamad, S. K., & Tasir, Z. (2013). Educational Data Mining: A Review. Procedia - Social and Behavioral Sciences, 97, pp. 320-324. doi:10.1016/j.sbspro.2013.10.240
- Nabil, A., Seyam, M., & Abou-Elfetouh, A. (2021). Prediction of Students’ Academic Performance Based on Courses’ Grades Using Deep Neural Networks. IEEE Access, pp. 1-1. doi:10.1109/ACCESS.2021.3119596
- Ordoñez-Avila, R., Reyes, N., Meza, J., & Ventura, S. (2023). Data mining techniques for predicting teacher evaluation in higher education: A systematic literature review. 9, p. e13939. doi:10.1016/j.heliyon.2023.e13939
- Papaioannou, N., Tsimpiris, A., Kounani, A., Stamatopoulos, I., Angeioplastis, A., & Varsamis, D. (2023a). Comparative analysis of convolutional neural networks for early diagnosis of plant diseases and pest in a multiclass dataset. International Journal of Computing and Optimization, 10, pp. 41-53. doi:10.12988/ijco.2023.9968
- Papaioannou, N., Tsimpiris, A., Talagozis, C., Fragidis, L., Angeioplastis, A., Tsakiridis, S., & Varsamis, D. (2023b). Parallel Feature Subset Selection Wrappers Using k-means Classifier. WSEAS TRANSACTIONS ON INFORMATION SCIENCE AND APPLICATIONS, 20, pp. 76-86. doi:10.37394/23209.2023.20.10
- Peña-Ayala, A. (2014). Review: Educational data mining: A survey and a data mining-based analysis of recent works. Expert Systems with Applications: An International Journal, pp. 1432-1462. doi:10.1016/j.eswa.2013.08.042
- Rodrigues, M., Zárate, L., & Isotani, S. (2018). Educational Data Mining: A review of evaluation process in the e-learning. Telematics and Informatics, 35. doi:10.1016/j.tele.2018.04.015
- Romanazzi, A., Scocciolini, D., Savoia, M., & Buratti, N. (2023). Iterative hierarchical clustering algorithm for automated operational modal analysis. Automation in Construction, 156, p. 105137. doi:10.1016/j.autcon.2023.105137
- Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, pp. 135-146. doi:10.1016/j.eswa.2006.04.005
- Rutkowska, D., Duda, P., Cao, J., Rutkowski, L., Byrski, A., Jaworski, M., & Tao, D. (2023). The L2 convergence of stream data mining algorithms based on probabilistic neural networks. Information Sciences, 631. doi:10.1016/j.ins.2023.02.074
- Sandra, L., Lumbangaol, F., & Matsuo, T. (2021). Machine Learning Algorithm to Predict Student’s Performance: A Systematic Literature Review. TEM Journal, 10, pp. 1919-1927. doi:10.18421/TEM104-56
- Schleicher, A. (2018). World Class: How to Build a 21st-Century School System. Paris: OECD Publishing. doi:10.1787/9789264300002-en
- Schnitzler, N., Ross, P.-S., & Gloaguen, E. (2019). Using machine learning to estimate a key missing geochemical variable in mining exploration: Application of the Random Forest algorithm to multi-sensor core logging data. Journal of Geochemical Exploration, 205, p. 106344. doi:https://doi.org/10.1016/j.gexplo.2019.106344
- Shaik, T., Tao, X., Dann, C., Xie, H., Li, Y., & Galligan, L. (2022). Sentiment analysis and opinion mining on educational data: A survey. Natural Language Processing Journal, 2, p. 100003. doi:10.1016/j.nlp.2022.100003
- Siemens, G., & Long, P. (2011). Penetrating the Fog: Analytics in Learning and Education. EDUCAUSE Review, pp. 30-32. doi:10.17471/2499-4324/195
- Strikas, K., Papaioannou, N., Stamatopoulos, I., Angeioplastis, A., Tsimpiris, A., Varsamis, D., & Giagazoglou, P. (2023). State-of-the-art CNN Architectures for Assessing Fine Motor Skills: a Comparative Study. WSEAS TRANSACTIONS ON ADVANCES in ENGINEERING EDUCATION, 20, pp. 44-51. doi:10.37394/232010.2023.20.7
- Sultana, J., Rani, M. U., & Farquad, H. (2019). Student’s Performance Prediction using Deep Learning and Data Mining methods.
- Tsimpiris, A., & Kugiumtzis, D. (2012a). Feature Selection for Classification of Oscillating Time Series. Expert Systems, 29, pp. 456 - 477. doi:10.1111/j.1468-0394.2011.00605.x
- Tsimpiris, A., Vlachos, I., & Kugiumtzis, D. (2012b). Nearest neighbor estimate of conditional mutual information in feature selection. Expert Systems with Applications, 39, pp. 12697–12708. doi:10.1016/j.eswa.2012.05.014
- Wang, J., Omar, A., Alotaibi, F., Daradkeh, Y., & Althubiti, S. (2022). Business intelligence ability to enhance organizational performance and performance evaluation capabilities by improving data mining systems for competitive advantage. Information Processing & Management, 59, p. 103075. doi:10.1016/j.ipm.2022.103075
- Zhang, H. (2004). The Optimality of Naive Bayes. Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2004, pp. 562-567.
- Zheng, Y. (2023). Promoting the Personal Development of Children Through Art Education. Journal of Contemporary Educational Research, 7, pp. 97-102. doi:10.26689/jcer.v7i4.4857