Main Article Content

Abstract

Education is a cornerstone of societal progress, equipping people with essential skills and knowledge. In today’s dynamic global society, personalized learning experiences are crucial. Data-driven methodologies, especially Educational Data Mining (EDM), play pivotal roles. This study employs machine learning algorithms to predict specializations for Greek high school students based on their previous grades. The aim is to provide a practical tool for educators and parents, aiding in the optimal selection of specializations. The paper outlines the methodology, presents comparative study results, and concludes with insights into the potential impact on educational decision-making. This research advances the integration of data-driven approaches in education, enhancing students’ learning experiences and prospects.

Keywords

Machine Learning Algorithms Educational Data Mining Prediction High School Data Mining

Article Details

How to Cite
Angeioplastis, A., Papaioannou, N., Tsimpiris, A., Kamilali, A., & Varsamis, D. (2024). Predicting student specializations: a Machine Learning Approach based on Academic Performance. Journal of E-Learning and Knowledge Society, 20(2), 19-27. https://doi.org/10.20368/1971-8829/1135904

References

  1. Alani, J., Yawe, B., & Mutenyo, J. (2022). Role of Higher Education Growth in Enhancing Economic Growth, Innovation Advancement and Technological Progress in Uganda (1970–2014). The uganda Higher Education Review, 10, pp. 1-18. doi:10.58653/nche.v10i1.01
  2. Aldowah, H., Al-Samarraie, H., & Fauzy, W. (2019). Educational Data Mining and Learning Analytics for 21st century higher education: A Review and Synthesis. Telematics and Informatics. doi:10.1016/j.tele.2019.01.007
  3. Altabrawee, H., Ali, O., & Qaisar, S. (2019). Predicting Students’ Performance Using Machine Learning Techniques. JOURNAL OF UNIVERSITY OF BABYLON for pure and applied sciences, 27, pp. 194-205. doi:10.29196/jubpas.v27i1.2108
  4. Amelia, N., Gafar Abdullah, A., Mulyadi, Y., & Ijost, I. (2019). Meta-analysis of Student Performance Assessment Using Fuzzy Logic. Indonesian Journal of Science and Technology, 4, pp. 74-88. doi:10.17509/ijost.v4i1.15804
  5. Amrieh, E., Hamtini, T., & Aljarah, I. (2016). Mining Educational Data to Predict Student’s academic Performance using Ensemble Methods. International Journal of Database Theory and Application, 9, pp. 119-136. doi:10.14257/ijdta.2016.9.8.13
  6. Antonello, F., Baraldi, P., Abdelaleem, A., Zio, E., Gentile, U., & Serio, L. (2021). A Novel Association Rule Mining Method for the Identification of Rare Functional Dependencies in Complex Technical Infrastructures from Alarm Data. Expert Systems with Applications. doi:10.1016/j.eswa.2021.114560
  7. Baker, R., & Yacef, K. (2009). The State of Educational Data Mining in 2009: A Review and Future Visions. Journal of Educational Data Mining, pp. 3-17. doi:10.5281/zenodo.3554657
  8. Breiman, L. (2001). Random Forests. Machine Learning, pp. 5-32. doi:10.1023/A:1010950718922
  9. Chalaris, M., Gritzalis, S., Maragoudakis, M., Sgouropoulou, C., & Tsolakidis, A. (2014). Improving Quality of Educational Processes Providing New Knowledge Using Data Mining Techniques. Procedia - Social and Behavioral Sciences, 147. doi:10.1016/j.sbspro.2014.07.117
  10. Chang, V., Chen, Y., & Xiong, C. (2018). Dynamic Interaction between Higher Education and Economic Progress: A Comparative Analysis of BRICS Countries. Information Discovery and Delivery, 46. doi:10.1108/IDD-07-2018-0023
  11. Chen, K., Abtahi, F., Carrero, J.-J., Fernandez-Llatas, C., & Seoane, F. (2023). Process mining and data mining applications in the domain of chronic diseases: A systematic review. Artificial Intelligence in Medicine, 144, p. 102645. doi:10.1016/j.artmed.2023.102645
  12. Clark, P., & Niblett, T. (1989). The CN2 Induction Algorithm. Machine Learning, pp. 261-283. doi:10.1023/A:1022641700528
  13. Correa-Morris, J., Urra Yglesias, A., & Puente, O. (2023). Hybrids of K-means and linkage algorithms., (pp. 10-17). doi:10.1109/ICAMCS59110.2023.00010
  14. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, pp. 273-297. doi:10.1007/BF00994018
  15. Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Trans. Inf. Theory, pp. 21-27. doi:10.1109/TIT.1967.1053964
  16. Demšar, J., Curk, T., Erjavec, A., Gorup, C., Hocevar, T., Milutinovic, M., . . . Zupan, B. (2013). Orange: Data Mining Toolbox in Python. Journal of Machine Learning Research, pp. 2349-2353.
  17. Dol Aher, S., & Jawandhiya, P. (2023). fication Technique and its Combination with Clustering and Association Rule Mining in Educational Data Mining — A survey. Engineering Applications of Artificial Intelligence, 122, p. 106071. doi:10.1016/j.engappai.2023.106071
  18. Gobert, J., Kim, Y. J., Pedro, M., Kennedy, M., & Betts, C. (2015). Using educational data mining to assess students’ skills at designing and conducting experiments within a complex systems microworld. Thinking Skills and Creativity, 18. doi:10.1016/j.tsc.2015.04.008
  19. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
  20. Gushchina, O., & Ochepovsky, A. (2020). Data mining of students’ behavior in E-learning system. Journal of Physics: Conference Series, 1553, p. 012027. doi:10.1088/1742-6596/1553/1/012027
  21. Hartigan, J., & Wong, M. (1979). Algorithm AS 136: A K-Means Clustering Algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics, 28, pp. 100--108.
  22. Hosmer, J. D., Lemeshow, S., & Sturdivant, R. (2013). Applied Logistic Regression. John Wiley & Sons.
  23. Jin, C., Li, F., Ma, S., & Wang, Y. (2022). Sampling scheme-based classification rule mining method using decision tree in big data environment. Knowledge-Based Systems, 244, p. 108522. doi:https://doi.org/10.1016/j.knosys.2022.108522
  24. Jin, X., & Hu, H. (2022). Research and implementation of smart energy investment and financing system design based on energy mega data mining. Energy Reports, 8, pp. 1226-1235. doi:10.1016/j.egyr.2022.02.044
  25. Jothi, N., Abdul Rashid, N., & Husain, W. (2015). Data Mining in Healthcare – A Review. Procedia Computer Science, 72, pp. 306-313. doi:10.1016/j.procs.2015.12.145
  26. Kallio, R. (1995). Factors influencing the college choice decisions of graduate students. Research in Higher Education, pp. 109-124. doi:10.1007/BF02207769
  27. Kaur, P., Singh, M., & Josan, G. (2015). Classification and Prediction Based Data Mining Algorithms to Predict Slow Learners in Education Sector. Procedia Computer Science, 57, pp. 500-508. doi:10.1016/j.procs.2015.07.372
  28. Kilag, O. K., Comighud, E., Amontos, C., Damos, M., & Abendan, C. F. (2023). Empowering Teachers: Integrating Technology into Livelihood Education for a Digital Future. Journal of Education, Excellencia.
  29. Kurnia, R. (2021). A Case for Mezirow’s Transformative Learning. Diligentia: Journal of Theology and Christian Education, p. 73. doi:10.19166/dil.v3i1.2945
  30. Mittal, S., Shuja, M., & Zaman, M. (2016). A Review of Data Mining Literature. IJCSIS, 14, pp. 437-442.
  31. Mohamad, S. K., & Tasir, Z. (2013). Educational Data Mining: A Review. Procedia - Social and Behavioral Sciences, 97, pp. 320-324. doi:10.1016/j.sbspro.2013.10.240
  32. Nabil, A., Seyam, M., & Abou-Elfetouh, A. (2021). Prediction of Students’ Academic Performance Based on Courses’ Grades Using Deep Neural Networks. IEEE Access, pp. 1-1. doi:10.1109/ACCESS.2021.3119596
  33. Ordoñez-Avila, R., Reyes, N., Meza, J., & Ventura, S. (2023). Data mining techniques for predicting teacher evaluation in higher education: A systematic literature review. 9, p. e13939. doi:10.1016/j.heliyon.2023.e13939
  34. Papaioannou, N., Tsimpiris, A., Kounani, A., Stamatopoulos, I., Angeioplastis, A., & Varsamis, D. (2023a). Comparative analysis of convolutional neural networks for early diagnosis of plant diseases and pest in a multiclass dataset. International Journal of Computing and Optimization, 10, pp. 41-53. doi:10.12988/ijco.2023.9968
  35. Papaioannou, N., Tsimpiris, A., Talagozis, C., Fragidis, L., Angeioplastis, A., Tsakiridis, S., & Varsamis, D. (2023b). Parallel Feature Subset Selection Wrappers Using k-means Classifier. WSEAS TRANSACTIONS ON INFORMATION SCIENCE AND APPLICATIONS, 20, pp. 76-86. doi:10.37394/23209.2023.20.10
  36. Peña-Ayala, A. (2014). Review: Educational data mining: A survey and a data mining-based analysis of recent works. Expert Systems with Applications: An International Journal, pp. 1432-1462. doi:10.1016/j.eswa.2013.08.042
  37. Rodrigues, M., Zárate, L., & Isotani, S. (2018). Educational Data Mining: A review of evaluation process in the e-learning. Telematics and Informatics, 35. doi:10.1016/j.tele.2018.04.015
  38. Romanazzi, A., Scocciolini, D., Savoia, M., & Buratti, N. (2023). Iterative hierarchical clustering algorithm for automated operational modal analysis. Automation in Construction, 156, p. 105137. doi:10.1016/j.autcon.2023.105137
  39. Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, pp. 135-146. doi:10.1016/j.eswa.2006.04.005
  40. Rutkowska, D., Duda, P., Cao, J., Rutkowski, L., Byrski, A., Jaworski, M., & Tao, D. (2023). The L2 convergence of stream data mining algorithms based on probabilistic neural networks. Information Sciences, 631. doi:10.1016/j.ins.2023.02.074
  41. Sandra, L., Lumbangaol, F., & Matsuo, T. (2021). Machine Learning Algorithm to Predict Student’s Performance: A Systematic Literature Review. TEM Journal, 10, pp. 1919-1927. doi:10.18421/TEM104-56
  42. Schleicher, A. (2018). World Class: How to Build a 21st-Century School System. Paris: OECD Publishing. doi:10.1787/9789264300002-en
  43. Schnitzler, N., Ross, P.-S., & Gloaguen, E. (2019). Using machine learning to estimate a key missing geochemical variable in mining exploration: Application of the Random Forest algorithm to multi-sensor core logging data. Journal of Geochemical Exploration, 205, p. 106344. doi:https://doi.org/10.1016/j.gexplo.2019.106344
  44. Shaik, T., Tao, X., Dann, C., Xie, H., Li, Y., & Galligan, L. (2022). Sentiment analysis and opinion mining on educational data: A survey. Natural Language Processing Journal, 2, p. 100003. doi:10.1016/j.nlp.2022.100003
  45. Siemens, G., & Long, P. (2011). Penetrating the Fog: Analytics in Learning and Education. EDUCAUSE Review, pp. 30-32. doi:10.17471/2499-4324/195
  46. Strikas, K., Papaioannou, N., Stamatopoulos, I., Angeioplastis, A., Tsimpiris, A., Varsamis, D., & Giagazoglou, P. (2023). State-of-the-art CNN Architectures for Assessing Fine Motor Skills: a Comparative Study. WSEAS TRANSACTIONS ON ADVANCES in ENGINEERING EDUCATION, 20, pp. 44-51. doi:10.37394/232010.2023.20.7
  47. Sultana, J., Rani, M. U., & Farquad, H. (2019). Student’s Performance Prediction using Deep Learning and Data Mining methods.
  48. Tsimpiris, A., & Kugiumtzis, D. (2012a). Feature Selection for Classification of Oscillating Time Series. Expert Systems, 29, pp. 456 - 477. doi:10.1111/j.1468-0394.2011.00605.x
  49. Tsimpiris, A., Vlachos, I., & Kugiumtzis, D. (2012b). Nearest neighbor estimate of conditional mutual information in feature selection. Expert Systems with Applications, 39, pp. 12697–12708. doi:10.1016/j.eswa.2012.05.014
  50. Wang, J., Omar, A., Alotaibi, F., Daradkeh, Y., & Althubiti, S. (2022). Business intelligence ability to enhance organizational performance and performance evaluation capabilities by improving data mining systems for competitive advantage. Information Processing & Management, 59, p. 103075. doi:10.1016/j.ipm.2022.103075
  51. Zhang, H. (2004). The Optimality of Naive Bayes. Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2004, pp. 562-567.
  52. Zheng, Y. (2023). Promoting the Personal Development of Children Through Art Education. Journal of Contemporary Educational Research, 7, pp. 97-102. doi:10.26689/jcer.v7i4.4857