Main Article Content


The diffusion of information and communication technologies, in the last decades, appears to be a great opportunity in teaching and learning processes, not attributable to a simple differentiation of learning supports.

Augmented reality (AR), in particular, appears capable of radically transforming learning methods, supporting students to have an educational experience able to involving all the senses, facilitating attention and the storage of content.

This paper provides a brief overview on the use of augmented reality in learning, in order to present a didactic re-mediation model and its trial application developed in the context of the Inf@nzia Digitales 3.6 project.

The illustrated learning experiences are designed for children from three to six years for the discovery of geometric shapes in a smart city, and their understanding as road signs.


Augmented Reality Smart City Childhood Education

Article Details

Author Biographies

Marta De Angelis, University of Salerno

Department of Human, Philosophical and Educational Sciences

Angelo Gaeta, University of Salerno

Deparment of Management and Innovation Systems

Francesco Orciuoli, University of Salerno

Department of Management and Innovation Systems

Mimmo Parente, University of Salerno

Department of Management and Innovation Systems

How to Cite
De Angelis, M., Gaeta, A., Orciuoli, F., & Parente, M. (2019). Improving learning with Augmented Reality: a didactic re-mediation model from Inf@nzia DigiTales 3.6. Journal of E-Learning and Knowledge Society, 15(3), 287-300.


  1. Akçayır M. & Akçayır G. (2017), Advantages and challenges associated with augmented reality for education: A systematic review of the literature, Educational Research Review, 20, 1-11.
  2. Azuma R., Baillot Y., Behringer R., Feiner S., Julier S., & McIntyre B. (2001), Recent advances in augmented reality. IEEE Computer Graphics and Applications, 21(6), 34-47.
  3. Bacca J., Baldiris S., Fabregat R. & Graf S., (2014), Augmented reality trends in education: a systematic review of research and applications, Educational Technology and Society, 17(4), 133-149.
  4. Bandura, A. (1969), Social-learning theory of identificatory processes, Handbook of socialization theory and research, 213, 262.
  5. Bolter J. D., & Grusin R. A. (1996), Remediation, Configurations, 4(3), 311-358.
  6. Bolter J. D., Grusin R., & Grusin R. A. (2000), Remediation: Understanding new media, mit Press.
  7. Bretherton I. (1984). Representing the social world in symbolic play: Reality and fantasy, In Symbolic play, 3-41, Academic Press.
  8. Bruner J., (1986). Actual Mind, Possible Worlds, Cambridge, Harvard University Press.
  9. Capuano N., Gaeta M., Miranda S., Orciuoli F., & Ritrovato, P. (2008). LIA: an Intelligent Advisor for e-learning, World Summit on Knowledge Society (pp. 187-196), Springer, Berlin, Heidelber.
  10. Capuano N., Gaeta A., Guarino G., Miranda S., & Tomasiello S. (2016). Enhancing augmented reality with cognitive and knowledge perspectives: a case study in museum exhibitions, Behaviour & Information Technology, 35(11), 968-979.
  11. Cohen L., Manion L., & Morrison K. (2002), Research methods in education, Routledge.
  12. Ciasullo M. V., Gaeta A., Gaeta M., & Monetta G. (2016), Modalità innovative di fruizione culturale. Il ruolo abilitante delle tecnologie digitali, Heritage, management e impresa: quali sinergie?
  13. Cuzzocrea A., De Maio C., Fenza G., Loia V., & Parente M. (2016), OLAP analysis of multidimensional tweet streams for supporting advanced analytics, Proceedings of the 31st Annual ACM Symposium on Applied Computing (pp. 992-999), ACM.
  14. De Maio C., Fenza G., Gallo M., Loia V., & Parente M. (2017), Time-aware adaptive tweets ranking through deep learning, Future Generation Computer Systems.
  15. De Maio C., Fenza G., Gallo M., Loia V., & Parente M. (2018), Social media marketing through time‐aware collaborative filtering, Concurrency and Computation: Practice and Experience, 30(1), e4098.
  16. Deuze M. (2006), Participation, remediation, bricolage: Considering principal components of a digital culture, The information society, 22(2), 63-75.
  17. Flavell J. H. (1979), Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry, American psychologist, 34(10), 906.
  18. Fenza G., & Orciuoli F., Building pedagogical models by formal concept analysis. In International Conference on Intelligent Tutoring Systems (pp. 144-153), Springer, Cham.
  19. Fenza G., Orciuoli F. & Sampson D. G. (2017), Building adaptive tutoring model using artificial neural networks and reinforcement learning, 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT) (pp. 460-462). IEEE.
  20. Gaeta A., Gaeta M., Guarino G., & Miranda S. (2015). A smart methodology to improve the story-building process, Journal of e-learning and knowledge society, 11(1).
  21. Huang Y., Li H., & Fong R. (2016), Using Augmented Reality in early art education: a case study in Hong Kong kindergarten, Early Child Development and Care, 186(6), 879-894.
  22. Manovich L. (2001), The language of new media. MIT press.
  23. Mayer R. E., & Moreno R. (2003). Nine ways to reduce cognitive load in multimedia learning, Educational psychologist, 38(1), 43-52.
  24. Mayer, R. E. (2005). Cognitive theory of multimedia learning, The Cambridge handbook of multimedia learning, 41, 31-48.
  25. Miglino O., Di Ferdinando A., Di Fuccio R., Rega A., & Ricci C. (2014), Bridging digital and physical educational games using RFID/NFC technologies, Journal of e-Learning and Knowledge Society, 10(3).
  26. Milgram P. & Kishino F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329.
  27. Miranda S., Marzano A. & Lytras M. D. (2017) A research initiative on the construction of innovative environments for teaching and learning. Montessori and Munari based psycho-pedagogical insights in computers and human behavior for the “new school”, Computers in Human Behavior, 66, 282-290.
  28. MIUR, (2012), Indicazioni per il curricolo per la scuola dell’infanzia e per il primo ciclo d’istruzione, in Annali della Pubblica Istruzione, Firenze, Le Monnier, (accessed on 10th Junw 2019)
  29. MIUR, (2015) Piano Nazionale scuola Digitale, URL: (accessed on 15th June 2019).
  30. Montessori M. (1948), La mente del bambino: mente assorbente, Milano, Garzanti.
  31. Piaget J. (1964), Part I: Cognitive development in children: Piaget development and learning, Journal of research in science teaching, 2(3), 176-186.
  32. Ponticorvo M., Di Fuccio R., Ferrara F., Rega A., & Miglino O. (2018), Multisensory educational materials: five senses to learn. In International Conference in Methodologies and intelligent Systems for Techhnology Enhanced Learning (pp. 45-52),Springer, Cham.
  33. Radu I. (2014) Augmented reality in education: a meta-review and cross-media analysis, Personal and Ubiquitous Computing, 18(6), 1533-1543.
  34. Shelton B. E., & Hedley N. R. (2004), Exploring a cognitive basis for learning spatial relationships with augmented reality, Technology, Instruction, Cognition and Learning, 1(4), 323.
  35. Vygotsky, L. S. (1962), Thought and language (E. Hanfmann & G. Vakar, trans.), Cambridge, mit Press.
  36. Vygotsky, L. S. (1978), Interaction between learning and development, Readings on the development of children, 23(3), 34-41.
  37. Vincenzi D. A., Valimont B., Macchiarella N., Opalenik C., Gangadharan S. N., & Majoros, A. E. (2003), The effectiveness of cognitive elaboration using augmented reality as a training and learning paradigm, in Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 47, No. 19, pp. 2054-2058). Sage CA: Los Angeles, CA, SAGE Publications.
  38. Wood D., Bruner J. S. & Ross G. (1976), The role of tutoring in problem solving. Journal of child psychology and psychiatry, 17(2), 89-100.
  39. Yilmaz R. M. (2016), Educational magic toys developed with augmented reality technology for early childhood education, Computers in Human Behavior, 54, 240-248.